0962815473

Tổng hợp các công thức lượng giác đầy đủ nhất bao gồm các công thức lượng giác cơ bản, công thức nhân, biến đổi tích thành cổng, lượng giác của các cung đặc biệt, giá trị lượng giác của các góc đặc biệt, các công thức nghiệm cơ bản...

Nội dung

Công thức lượng giác cơ bản

1.\ \tan x=\frac{\sin x}{\cos x}

2.\ \cot x=\frac{\cos x}{\sin x}

3.\ \sin^2x+\cos^2x=1

4.\ \tan x.\cot x=1\left(x\ne k\frac{\pi}{2},\ k\ ∈\ Z\right)

5.\ 1+\tan^2x=\frac{1}{\cos^2x}\ \left(x\ne\frac{\pi}{2}+k\pi,\ k\ ∈\ Z\right)

6.\ 1+\cot^2x=\frac{1}{\sin^2x}\ \left(x\ne k\pi,\ k\ ∈\ Z\right)

Công thức cộng lượng giác

1. sin (a ± b) = sin a.cos b ± cos a.sin b

2. cos (a + b) = cos a.cos b – sin a.sin b

3. cos (a – b) = cos a.cos b + sin a.sin b

4.\ \tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan.\tan b}

5.\ \tan\left(a-b\right)=\frac{\tan a-\tan b}{1+\tan a.\tan b}

Mẹo nhớ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.

Công thức các cung liên kết trên đường tròn lượng giác

Mẹo nhớ: cos đối, sin bù, phụ chéo, tan hơn kém π

Hai góc đối nhau:

  • cos (-x) = cos x
  • sin (-x) = -sin x
  • tan (-x) = -tan x
  • cot (-x) = -cot x

Hai góc bù nhau:

  • sin (π – x) = sin x
  • cos (π – x) = -cos x
  • tan (π – x) = -tan x
  • cot (π – x) = -cot x

Hai góc phụ nhau:

  • sin (π/2 – x) = cos x
  • cos (π/2 – x) = sin x
  • tan (π/2 – x) = cot x
  • cot (π/2 – x) = tan x

Hai góc hơn kém π:

  • sin (π + x) = -sin x
  • cos (π + x) = -cos x
  • tan (π + x) = tan x
  • cot (π + x) = cot x

Hai góc hơn kém π/2:

  • sin (π/2 + x) = cos x
  • cos (π/2 + x) = -sin x
  • tan (π/2 + x) = -cot x
  • cot (π/2 + x) = -tan x

Công thức nhân

Công thức nhân đôi:

  • sin2a = 2sina.cosa
  • cos2a = cos2a – sin2a = 2cos2a – 1 = 1 – 2sin2a
  • \tan2a=\frac{2\tan a}{1-\tan^2a}
  • \cot2a=\frac{\cot^2a\ -1}{2\cot a}

Công thức nhân ba:

  • sin3a = 3sina – 4sin3a
  • cos3a = 4cos3a – 3cosa
  • \tan3a=\frac{3\tan a-\tan^3a}{1-3\tan^2a}
  • \cot3a=\frac{\cot^3a-3\cot a}{3\cot^2a-1}

Công thức nhân bốn:

  • sin4a = 4.sina.cos3– 4.cosa.sin3a
  • cos4a = 8.cos4a – 8.cos2a + 1
  • hoặc cos4a = 8.sin4a – 8.sin2a + 1

Công thức hạ bậc

Thực ra những công thức này đều được biến đổi ra từ công thức lượng giác cơ bản, ví dụ như: sin2a=1 – cos2a = 1 – (cos2a + 1)/2 = (1 – cos2a)/2.

1.\ \sin^2a\ =\ \frac{1-\cos2a}{2}

2.\ \cos^2a=\frac{1+\cos2a}{2}

3.\ \sin^3a=\frac{3\sin a-\sin3a}{4}

4.\ \cos^3a=\frac{3\cos a+\cos3a}{4}

Công thức biến tổng thành tích

Mẹo nhớ: cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.

1.\ \cos a+\cos b=2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}

2.\ \cos a-\cos b=-2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}

3.\ \sin\ a+\sin b=2\sin\frac{a+b}{2}.\cos\frac{a-b}{2}

4.\ \sin\ a-\sin b=2\cos\frac{a+b}{2}.\sin\frac{a-b}{2}

5.\ \tan a+\tan b=\frac{\sin\left(a+b\right)}{\cos a.\cos b}

6.\ \tan a-\tan b=\frac{\sin\left(a-b\right)}{\cos a.\cos b}

7.\ \sin a+\cos a=\sqrt{2}\sin\left(a+\frac{\pi}{4}\right)=\sqrt{2}\cos\left(a-\frac{\pi}{4}\right)

8.\ \sin a-\cos a=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)

9.\ \tan a+\cot a=\frac{2}{\sin2a}

10.\ \cot a-\tan a=2\cot2a

11.\ \sin^4a+\cos^4a=1-\frac{1}{2}\sin^22a=\frac{1}{4}\cos4a+\frac{3}{4}

12.\ \sin^6a+\cos^6a=1-\frac{3}{4}\sin^22a=\frac{3}{8}\cos4a+\frac{5}{8}

Công thức biến đổi tích thành tổng

1.\ \cos a.\cos b=\frac{1}{2}\left[\cos\left(a+b\right)+\cos\left(a-b\right)\right]2.\ \sin a.\sin b=-\frac{1}{2}\left[\cos\left(a+b\right)-\cos\left(a-b\right)\right]

3.\ \sin a.\cos b=-\frac{1}{2}\left[\sin\left(a+b\right)+\sin\left(a-b\right)\right]

Nghiệm phương trình lượng giác

Phương trình lượng giác cơ bản:

1.\;\sin a=\sin b\;\Leftrightarrow\left[\begin{array}{c}a=b+k2\mathrm\pi\\a=\mathrm\pi-\mathrm b+\mathrm k2\mathrm\pi\end{array}(k\in Z)\right]

2.\;\cos a=\cos b\;\Leftrightarrow\;\left[\begin{array}{c}a=b+k2\mathrm\pi\\a=-b+k2\mathrm\pi\end{array}(k\in Z)\right]

3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)

4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)

Phương trình lượng giác trong trường hợp đặc biệt:

  • sin a = 0 ⇔ a = kπ; (k ∈ Z)
  • sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
  • sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
  • cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
  • cos a = 1 ⇔ a = k2π; (k ∈ Z)
  • cos a = -1 ⇔ a = π + k2π; (k ∈ Z)

Bảng giá trị lượng giác một số góc đặc biệt

 Bảng giá trị lượng giác một số góc đặc biệt

Công thức lượng giác bổ sung

Biểu diễn công thức theo t=\frac{\tan a}{2}  

1.\ \sin a=\frac{2t}{1+t^2}\ \ \ \ \ \ \ \ \ \ \ \ 2.\ \cos a=\frac{1-t^2}{1+t^2}

3.\ \tan\ a=\frac{2t}{1-t^2}\ \ \ \ \ \ \ \ \ \ 4.\ \cot a=\frac{1-t^2}{2t}

Công thức lượng giác dạng ảnh:

  • Công thức đạo hàm
  • Công thức nguyên hàm
  • Công thức tính diện tích tam giác
  • Công thức tính diện tích hình chữ nhật
  • Công thức tính vận tốc
  • Công thức tính chu vi hình chữ nhật
  • Công thức tính công suất
  • Công thức logarit
  • Công thức cấp số cộng
  • Công thức hạ bậc
  • Công thức tính chu vi hình vuông
  • Công thức tính số mol
  • Công thức tính diện tích hình tròn
  • Công thức tính diện tích hình thang
  • Công thức tính áp suất
  • Công thức tính thể tích
  • Công thức tính diện tích hình bình hành
  • Công thức tính quãng đường
  • Công thức tính hiệu suất
  • Công thức tích phân
  • Công thức tính khối lượng
  • Công thức tính lãi kép
  • Công thức tính gia tốc

Bài viết liên quan

Công thức tính diện tích tam giác

Có rất nhiều các cách khác nhau để tính diện tích tam giác với nhiều công thức được sử dụng phổ biến cũng như công thức khi sử dụng cần được phải chứng minh. Ở bài viết này sẽ giới thiệu đến các bạn những cách tính diện tích tam giác dễ hiểu và được sử dụng nhiều nhất để bạn có thể áp dụng.

Read More »

Công thức nguyên hàm

Trang cung cấp đầy đủ các kiến thức về nguyên hàm cần nhớ. Đây còn là nguồn tài liệu quý báo cần lưu giữ khi cần đến!

Read More »

Công thức đạo hàm

Dưới đây là bảng công thức đạo hàm, đạo hàm lượng giác, các hàm lượng giác và công thức đạo hàm cao cấp đầy đủ nhất giúp các bạn dễ dàng ôn lại những kiến thức toán học về đạo hàm đã được học một cách nhanh nhất để áp dụng khi cần thiết.

Read More »

Công thức lượng giác

Tổng hợp các công thức lượng giác đầy đủ nhất bao gồm các công thức lượng giác cơ bản, công thức nhân, biến đổi tích thành cổng, lượng giác của các cung đặc biệt, giá trị lượng giác của các góc đặc biệt, các công thức nghiệm cơ bản…

Read More »
Rate this post
Hieu Pham Thanh

Hieu Pham Thanh

Facebook
Twitter
Pinterest
Đánh giá bài viết
5/5